

Joachim Kurzke

Steady State Performance

by Joachim Kurzke

Copyright (C) 2013 by Joachim Kurzke

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Printed in Germany

Table of Contents

Part I	GasTurb Computer Deck	7
Part II	Engine Description	7
Part III	Program Description	7
Part IV	Program Setup	7
1	General	7
2	DLL Interface	8
3	DLL Function Call Sequence	9
4	Test Main	. 11
5	Excel Application	. 11
Part V	Nomenclature and Units	11
1	Station Designation	. 11
2	Units	. 13
Part VI	Engine Program Performance	40
	Options	13
1	Engine Model File	. 13
	Steady State Limiters	14
2	Power Lever Angle	14 14
- 3	Power Code	15
4	Rating Code	. 16
Part VII	Input/Output	16
1		16
1	FIXIN Parameter Definition	. 10
2	VARIN	. 19
3	FIXOUT	. 19
	FIXOUT Parameter Definition	20
4	VAROUT	. 23
Part VIII	Program Messages	23
1	Numerical Status Indicator NSI	. 23
2	Steady State Limiter Codes	. 24
3	Transient Limiter Codes	. 25
4	About Convergence Problems	. 26
Part IX	Test Cases	26

6	Turbojet Deck		
	1 Cycle Reference Point	26	
	2 Steady State Off-Design		
	3 Transient	27	
Part)	K Identification and Revision Procedure	27	
Part X	I References	27	
	Index	29	

7

1 GasTurb Computer Deck

The GasTurb Turbojet Deck is a computer deck as defined in the SAE Aerospace Standard AS681. The actual engine subroutine is contained in a Dynamic Link Library (DLL). The use of the engine subroutine is demonstrated both with a Delphi test main program and with an Excel macro. The Dynamic Link Library can be used with any other 32-bit Windows program.

The data describing the engine are created with GasTurb 12 as an Engine Model File which is loaded during the Turbojet Deck initialization process. The Engine Model File contains all data necessary for doing off-design simulations, both for steady state and transient operation. Maximum and minimum limiters as well as bleed schedules must be defined in the engine model. It is strongly recommended to check this model thoroughly with GasTurb 12 before using it with the Turbojet Deck DLL.

Transient simulations can employ the control system as defined in the GasTurb 12 model or run to a specified fuel flow or spool speed.

2 Engine Description

With this generic computer deck the performance of single spool turbojet engines without afterburner can be calculated. Which engine is modeled in particular depends on the Engine Model File created with GasTurb 12.

3 Program Description

The Turbojet Deck has been developed with Delphi XE4 running under Windows 8. The test main program has a standard windows user interface and calls functions from the Turbojet Deck DLL which contains the actual engine simulation model. An alternative use of the Turbojet Deck is shown as an Excel application in the file TurbojetDeckDemo.xls

4 Program Setup

4.1 General

The Turbojet Deck calls functions from a DLL which can be used with any Windows program. In the test main program this DLL is employed by a Delphi program, in the file TurbojetDeckDemo.xls the functions of the DLL are called from an Excel macro. Before commencing with the engine simulation the functions in the DLL must be initialized. During initialization an Engine Model File created with GasTurb 12 is read from file and evaluated. The required organization of the files is as summarized in the table below. Note that the Data Directory can be the same as the DLL Directory.

DLL Directory	Data Directory
TurbojetDeckLib.DLL	An Engine Model File, created with GasTurb 12
LoadOptions.NMS	Component map data files referenced in the Engine Model File
Turbojet.NMS	Fuels.gtb and all files referenced in Fuels.gtb

4.2 DLL Interface

The DLL contains the functions and procedures (subroutines) listed in the table. Note that when declaring the functions and subroutines in a VBA program within Excel, for example, the expression {Path to the DLL} in the table below must be replaced by the actual path to the DLL on the users machine.

Delphi	Visual Basic for Applications (VBA)
function GetDLLVersion : double;	Declare Function GetDLLVersion Lib "{Path to the DLL}\TurbojetDeckLib.dll" () As Double
procedure WriteFIXIN (ZCASEFI,ZALTFI,ZDTAMBFI,ZERM1AFI,ZPWX HFI, ZPAMBFI,ZPCFI, ZPLAFI,ZP1AFI,ZRCFI,SERAMFI, SIMFI,ZTAMBFI,ZT1AFI,ZWB3FI,ZWB3QFI,ZXM FI, ZTIMEFI : double);	Declare Sub WriteFIXIN Lib "{Path to the DLL}\TurbojetDeckLib.dll" (ByVal ZCASEFI#, ByVal ZALTFI#, ByVal ZDTAMBFI#, ByVal ZERM1AFI#, ByVal ZPWXHFI#, ByVal ZPAMBFI#, ByVal ZPCFI#, ByVal ZPLAFI#, ByVal ZP1AFI#, ByVal ZRCFI#, ByVal SERAMFI#, ByVal SIMFI#, ByVal ZTAMBFI#, ByVal ZT1AFI#, ByVal ZWB3FI#, ByVal ZWB3QFI#, ByVal ZXMFI#, ByVal ZTIMEFI#)
procedure ReadFIXIN (var ZCASEFI,ZALTFI,ZDTAMBFI,ZERM1AFI, ZPWXHFI,ZPAMBFI,ZPCFI,ZPLAFI,ZP1AFI,ZRC FI, SERAMFI,SIMFI,ZTAMBFI,ZT1AFI,ZWB3FI,ZW B3QFI, ZXMFI,ZTIMEFI : double);	Declare Sub ReadFIXIN Lib "{Path to the DLL}\TurbojetDeckLib.dll" (ZCASEFI#, ZALTFI#, ZDTAMBFI#, ZERM1AFI#, ZPWXHFI#, ZPAMBFI#, ZPCFI#, ZPLAFI#, ZP1AFI#, ZRCFI#, SERAMFI#, SIMFI#, ZTAMBFI#, ZT1AFI#, ZWB3FI#, ZWB3QFI#, ZXMFI#, ZTIMEFI#)
procedure WriteVARIN (ZHUMIDVI,ZFHVVI,ZFNVI,ZWFVI,ZXNRPMVI, ZWRCQ2VI,SESTVI,ZBTACVI,ZRXNHVI,ZT4VI, ZBTATVI,ZDTRCVI,STRANSVI,ZCTRCPVI,ZCTR CDVI, ZCTRCIVI : double);	Declare Sub WriteVARIN Lib "{Path to the DLL}\TurbojetDeckLib.dll" (ByVal ZHUMIDVI#, ByVal ZFHVVI#, ByVal ZFNVI#, ByVal ZWFVI#, ByVal ZXNRPMVI#, ByVal ZWRCQ2VI#, ByVal SESTVI#, ByVal ZBTACVI#, ByVal ZRXNHVI#, ByVal ZT4VI#, ByVal ZBTATVI#, ByVal ZDTRCVI#, ByVal STRANSVI#, ByVal ZCTRCPVI#, ByVal ZCTRCDVI#, ByVal ZCTRCIVI#)

9

procedure ReadVARIN (var ZHUMIDVI,ZFHVVI,ZFNVI,ZWFVI,ZXNRPMVI, ZWRCQ2VI,SESTVI,ZBTACVI,ZRXNHVI,ZT4VI,Z BTATVI, ZDTRCVI,STRANSVI,ZCTRCPVI,ZCTRCDVI,ZCT RCIVI : double);	Declare Sub ReadVARIN Lib "{Path to the DLL}\TurbojetDeckLib.dll" (ZHUMIDVI#, ZFHVVI#, ZFNVI#, ZWFVI#, ZXNRPMVI#, ZWRCQ2VI#, SESTVI#, ZBTACVI#, ZRXNHVI#, ZT4VI#, ZBTATVI#, ZDTRCVI#, STRANSVI#, ZCTRCPVI#, ZCTRCDVI#, ZCTRCIVI#)
procedure ReadFIXOUT (var NSIFO,AE8FO,FRAMFO,FGFO,FHVFO,FNFO, PB3FO,P7FO,SFCFO,TB3FO,T7FO,WFEFO,W FTFO, W1AFO,W7FO,W2FO,XNHFO,ALTFO,PAMBF O,PLAFO, P1AFO,TAMBFO,T1AFO,XMFO,SMHFO,TIMEF O, ERAM1FO,DTAMBFO,PCFO,RCFO,WB3FO,W B3QFO, PWXHFO : Double);	Declare Sub ReadFIXOUT Lib "{Path to the DLL}\TurbojetDeckLib.dll" (NSIFO#, AE8FO#, FRAMFO#, FGFO#, FHVFO#, FNFO#, PB3FO#, P7FO#, SFCFO#, TB3FO#, T7FO#, WFEFO#, WFTFO#, W1AFO#, W7FO#, W2FO#, XNHFO#, ALTFO#, PAMBFO#, PLAFO#, P1AFO#, TAMBFO#, T1AFO#, XMFO#, SMHFO#, TIMEFO#, ERAM1FO#, DTAMBFO#, PCFO#, RCFO#, WB3FO#, WB3QFO#, PWXHFO#)
procedure ReadVAROUT (var humidVO,T2VO,T3VO,T4VO,T41VO,T5VO, P3VO,Ps3VO,P5VO,NHDOT,FAR4,LIMCD,BTA CVO, RXNHVO,BTATVO,DTRCVO :Double);	Declare Sub ReadVAROUT Lib "{Path to the DLL}\TurbojetDeckLib.dll" (humidVO#, T2VO#, T3VO#, T4VO#, T41VO#, T5VO#, P3VO#, Ps3VO#, P5VO#, NHDOT#, FAR4#, LIMCD#, BTACVO#, RXNHVO#, BTATVO#, DTRCVO#)
procedure InitializeEngine (DLLPath,FileName : PChar);	Declare Sub InitializeEngine Lib "{Path to the DLL}\TurbojetDeckLib.dll" (ByVal DLLPath\$, ByVal Filename\$)
procedure SinglePoint;	Declare Sub SinglePoint Lib "{Path to the DLL}\TurbojetDeckLib.dll" ()

4.3 DLL Function Call Sequence

DLL Initialization

During initialization of the DLL the files in the DLL directory and in the Engine Model File directory are read. Furthermore, the cycle reference point is calculated which yields all the output quantities for this operating condition. After the call of InitializeEngine all the elements of FIXIN, VARIN, FIXOUT and VAROUT can be read by the DLL calling program:

InitializeEngine

ReadFIXIN

ReadVARIN

ReadFIXOUT

ReadVAROUT

If after the initialization the VARIN property SEST is set to 1, then the following single point calculation will employ as starting values of the iteration the properties ZBTAC, ZRXNH, ZT4, ZBTAT and ZDTRC. It is a good idea to write the results (i.e. the VAROUT properties BTAC, RXNH, BTAT and DTRC) to the corresponding input properties immediately after calling InitializeEngine. Thus there are reasonable estimates for the iteration variables readily available for the use with SEST=1 if convergence problems are encountered.

Using the DLL for steady state simulations

The procedure (subroutine) **SinglePoint** calculates a single cycle point either in steady state (ZTIME=0) or transient mode (ZTIME>0). Before calling the actual simulation function **SinglePoint** the input data stored in the FIXIN and VARIN properties must be transferred to the DLL by calling the procedures **WriteFIXIN** and **WriteVARIN**. After the cycle calculation is finished, the results can be read from the DLL by calling the procedures **ReadFIXOUT** and **ReadVAROUT**:

WriteFIXIN

WriteVARIN

SinglePoint

ReadFIXOUT

ReadVAROUT humid, T2, T3, T4, T41, T5, P3, Ps3, P5, NHDOT, FAR4, LIMCD, BTAC, RXNH, BTAT, DTRC

Using the DLL for transient simulations

The procedure (subroutine) **SinglePoint** calculates a single point in transient mode for the time = ZTIME (defined in FIXIN) which must be greater than the value TIME (defined in VAROUT) of the previously calculated point. The begin of the transient maneuver is the operating condition that was calculated with ZTIME=0 immediately before ZTIME is set to a value greater than zero.

ZTIME=0 repeat WriteFIXIN

WriteVARIN

SinglePoint

ReadFIXOUT

ReadVAROUT

ZTIME=TIME+delta time

until ZTIME > end time

4.4 Test Main

The Test Main program has been created and compiled with Delphi XE4. It provides a graphical user interface for the functions and procedures in the DLL.

Before commencing with simulations, the DLL must be initialized by loading an Engine Model File which was created with GasTurb 12. Note that the component maps employed in the Engine Model File must be stored in the same directory as the Engine Model File as described on the general introduction to the program setup.

On the steady state input page the input properties for a single point are offered. The input properties are grouped as FIXIN and VARIN, the output properties are shown in the groups FIXOUT and VAROUT.

The transient page of the test main program offers the following three simulation examples:

- A step increase of 10% in fuel flow (GasTurb 12 control system inactive)
- A PLA maneuver with activated control system as described with the Engine Model File
- An example with prescribed spool speed (GasTurb 12 control system inactive)

Each transient maneuver commences with the steady state condition calculated before switching to transient simulations.

4.5 Excel Application

The file TurbojetDeckDemo.xls - which is delivered as part of the software package - demonstrates the use of the Turbojet Deck DLL with Excel.

Before running the file TurbojetDeckDemo.xls make sure that the correct path to the DLL is introduced in the declaration section of the VBA program. After starting Excel (macros activated) use Alt+F11 for opening the VBA editor and replace the DLL path information - which is valid only on the computer of the DLL author - with the path to the place where you have stored the DLL on your computer.

The calculation options in the Excel file are essentially the same as those in the Test Main program.

5 Nomenclature and Units

5.1 Station Designation

The station definition used in the program follows the international standard for performance computer programs. This standard has been published by the Society of Automotive Engineers SAE as ARP 755C.

The thermodynamic station names are defined as follows:

```
0
      ambient
1
      aircraft-engine interface
2
      first compressor inlet
3
      last compressor exit, cold side heat exchanger inlet
     burner inlet
31
4
     burner exit
41
     first turbine stator exit = rotor inlet
5
     turbine exit after addition of cooling air
     jet pipe inlet, reheat entry
6
8
     nozzle throat
      nozzle exit (convergent-divergent nozzle only)
9
```

5.2 Units

The functions and procedures in the DLL employ SI units.

Altitude	m
Temperature	К
Pressure	kPa
Mass Flow	kg/s
Shaft Power	kW
Thrust	kN
SFC	g/(kN s)
Velocity, Spec.Thrust	m/s
Area	m²

6 Engine Program Performance Options

6.1 Engine Model File

The Engine Model File that is read during the initialization of the DLL must have been be created with GasTurb 12. The following restrictions apply:

- · SI units must be selected when writing the Engine Model File
- Both rel N for PLA = 0% and rel N for PLA = 100% must be set to reasonable values. The input for these two quantities is found on the Transient Input Page in the Off-Design Input window of GasTurb 12.
- Steady state limiters must be switched on, both min and max limiters must be defined.
- If transient limiters are not constant, then the respective iteration must be defined. The input of this
 iteration and the required composed values is selectable from the transient input window.
- An intake map must be read from file before writing the Engine Model File from within GasTurb 12. This intake map, however, needs not necessarily be employed in the calculation.
- SMode must be set to 1.

14

6.1.1 Steady State Limiters

Limiters can be single valued or follow a schedule. How to employ control schedules is described in the GasTurb 12 help system and the manual.

Besides the pre-defined limiters up to three composed values can be employed as additional limiters. Note that drop-down lists with composed values (on the bottom left side of the limiter input page in GasTurb 12) will appear only if at least one composed value is defined.

In the Engine Model File delivered as an example for the Turbojet Deck application the idle spool speed is a function of altitude:

NIdle=60+0.002*Altitude

The first composed value for steady state off-design operation is defined as

cp_val1 = XN_HPC*100/(60+0,002*alt)

This composed value is employed as a Min Limiter with the min value of 1.0

6.1.2 Transient Limiters

During transient operation with the GasTurb 12 control system active all the steady state limiters are activated as set in the Engine Model File. Additionally the transient limiters like dN/dtmin and dN/ dtmax, for example, are active.

If you want dN/dtmax make a function of spool speed, for example, then you must employ an additional iteration combined with a composed value. The definitions of the composed value for transient operation and the iteration can be accessed from the menu in the transient window of GasTurb 12.

In the Engine Model File delivered as an example for the Turbojet Deck application dN/dtmax is a function of spool speed. The first composed value for transient operation is defined as

cp_val1 = 0.2 - 0.15*XN_HPC

The input value for dN/dtmax is iterated in such a way that it equals cp_val1.

For running the simulation with modified limiter settings a new Engine Model File must be created.

6.2 Power Lever Angle

The power level selection is controlled by the input value for the Power Code ZPC. If ZPC is 0, then the Power Lever Angle input ZPLA will be used. However, any valid Rating Code ZRC will overwrite the ZPLA input.

In the Turbojet Deck the power lever angle is linearly connected with the spool speed. Nmax Power is equal to rel N for PLA = 100% as defined on the Transient Input Page of GasTurb 12 and Nidle corresponds to rel N for PLA = 0%.

15

6.3 Power Code

The following Power Codes are defined:

PC = 50 Maximum PC = 20 ldle PC = 0Power Lever Angle input is active, however, any valid Rating Code input ZRC overrules the Power Lever Angle input PC = -1 run to net thrust ZFN (control system active) PC = -2 run to fuel flow ZWF (control system active, except fuel flow schedule) PC = -3run to spool speed ZXNRPM (control system active) PC = -11 run to net thrust ZFN (control system inactive) PC = -12 run to net fuel flow ZWF (control system inactive) PC = -13 run to spool speed ZXNRPM (control system inactive)

6.4 Rating Code

There are two valid Rating Codes defined:

- 1. Rating code ZRC = 50 selects maximum power
- 2. ZRC = 20 selects idle.

7 Input/Output

The input and output data are arranged in four groups that correspond with the COMMON blocks FIXIN, VARIN, FIXOUT and VAROUT as defined in AS681.

7.1 FIXIN

FIXIN properties are as defined in AS681. Some of them are not applicable, some of them are not used in the Turbojet Deck. Note that all data that are transferred to the functions and procedures in the DLL are of the type double.

FIXIN:			
NIN		not used	
NOUT		not used	ZXM
IND		1,001	ZERAM1
TITLE		Turbojet	ZERM11
CASE		1	
ZALT	[m]	0	
ZDTAMB	[K]	10	
ZDT1A		not used	
ZERM1A		0,99	SDIST
ZPWXH	[kW]	0	FYPH
ZPAMB	[kPa]	0	FYSH
ZPC		0	ZPWSD
ZPLA		90	ZTIME
ZP1A		0	TIMEF1
ZRC		0	TIMEF2
SERAM		2	TIMEO
SIM		1	ZTIMET
ZTAMB		not used	ZXJPTL
ZT1A	[K]	0	ZXNSD
ZWB3	[kg/s]	0	ZTRQSD
ZWB3Q		0,01	SWIND

ZERAM1	n/a
ZERM11	n/a
	not used
SDIST	not used
FYPH	not used
FYSH	not used
ZPWSD	n/a
ZTIME [s]	0
TIMEF1	not used
TIMEF2	not used
TIMEO	not used
ZTIMET	not used
ZXJPTL	n/a
ZXNSD	n/a
ZXNSD ZTRQSD	n/a n/a

0

There are two inlet modes selectable with the switch SIM:

SIM	1	Zalt, Zdtamb, ZXM
	2	ZT1A, ZP1A, ZPAMB

SERAM	1	subsonic: ZERAM (as SERAM=2)
		supersonic: ZERAM* { 1-0.075*(XM-1) ^{1.35} }
	2	ZERAM
	3	ram recovery from the intake map

There are three options offered for the ram pressure recovery selection switch SERAM:

7.1.1 FIXIN Parameter Definition

The SAE Aerospace Standard AS681G provides a method for the presentation of results from computer programs using FORTRAN 77.

The fixed sequence list of the parameters in the fixed input labeled common (FIXIN), and the identity of these parameters (with typical nomenclature consistent with ARP755) are as follows:

1	NIN	Input file number (INTEGER)
2	NOUT	Output file number (INTEGER)
3	IND	Engine program indicator (INTEGER)
4	TITLE (18)	User title: - dimension 18 (HOLLERITH)
5	CASE	Numerical case identification
6	ALT	Geopotential pressure altitude
7	ZDTAMB	Ambient temperature minus standard atmospheric temperature
8	ZDT1A	Temperature to be added to T1A
9	ZERM1A	Ram pressure recovery at station 1A
10	ZPWXH	Customer high pressure rotor power extraction
11	ZPAMB	Ambient pressure
12	ZPC	Power code
13	ZPLA	Power lever angle
14	ZP1A	Engine inlet total pressure at station 1A
15	ZRC	Rating code
16	SERAM	Ram pressure recovery selection
		Average Options SERAM = 1, Selects specified ram pressure recovery SERAM = 2, Selects input value of ram pressure recovery SERAM = 3, Selects ram pressure recovery from user supplied subroutine (ERAMX)

		Differentiated Options SERAM = 4, Selects input values of primary and secondary ram pressure recovery SERAM = 5, Selects input value of primary stream ram pressure recovery and calls user supplied subroutine (ERAMX) for secondary stream ram pressure recovery SERAM = 6, Selects primary and secondary stream ram pressure recoveries from user supplied subroutine (ERAMX)
17	SIM	Inlet mode selection
		SIM = 1, Selects altitude and Mach number SIM = 2, Selects pressure and temperatures SIM = Other than 1 or 2 coordinated between user and supplier
18	ZTAMB	Ambient temperature
19	ZT1A	Engine inlet total temperature at station 1A
20	ZWB3	High pressure compressor discharge bleed flow rate
21	ZWB3Q	High pressure compressor bleed flow ratio (discharge over component inlet)
22	ZXM	Free stream Mach number
23	ZERAM1	Primary stream ram pressure recovery
24	ZERM11	Secondary stream ram pressure recovery
25		Reserved for historical consistency
26		Reserved for historical consistency
27		Reserved for historical consistency
28		Reserved for historical consistency
29	SDIST	Inlet pressure and temperature distortion selection
30	FYPH	Primary maximum response frequency
31	FYSH	Secondary maximum response frequency
32	ZPWSD	Specified shaft power
33	ZTIME	Time from start of transient case
34	TIMEF1	Time at which frequency is changed to FYSH
35	ZIMEF2	Time at which frequency is changed to FYPH
36	TIMEO	Output time interval
37	ZTIMET	Termination time of transient case
38	ZXJPTL	Polar moment of inertia of power turbine load
39	ZXNSD	Specified shaft rotational speed

40ZTRQSDSpecified shaft torque41SWINDWindmilling selection

7.2 VARIN

SEST	0 begin the iteration with the values from previous point		
	1	begin the iteration with ZBTAC, ZXNH, ZBTAT, ZDTRC	
ZBTAC		beta value in the compressor map	
ZRXNH		relative spool speed	
ZBTAT		beta value in the turbine map	
ZDTRC		temperature increase due to recirculating bleed air	
ZFN		specified net thrust	
ZWF		specified fuel flow	
ZXNRPM		specified spool speed in RPM	
STRANS	1	Transient with ZPLA = f(ZTIME) input, the GasTurb control system is active	
	2	Transient with ZWF = f(ZTIME) input, the GasTurb control system is inactive	
	3	Transient with ZXNRPM = f(ZTIME) input, the GasTurb control system is inactive	
ZCTRCP		proportional constant of the GasTurb PID controller	
ZCTRCD		differential constant of the GasTurb PID controller	
ZCTRCI		integral constant of the GasTurb PID controller	

7.3 FIXOUT

FIXOUT properties are as defined in AS681. Some of them are not applicable, some of them are not used in the Turbojet Deck. Note that all data that are transferred from the functions and procedures in the DLL are of the type double.

FIXOUT:			
CLASS		not used 🔺	
IDENT		not used 📃	
NSI		0	
AE8	[m²]	0,0759551	
AE18		n/a	
ANGBT		not used	
FRAM	[kN]	0	
FG	[kN]	25,4526	
FGI	[kN]	not used	
FG19	[kN]	n/a	
FGI19	[kN]	n/a	
FHV	[MJ/kg]	43,124	
FN	[kN]	25,4526	
PB3	[kPa]	1203,74	
P7	[kPa]	343,983	
P17		n/a	
SFC	[g/(kN*s)]	24,9687	
		not used	
твз		651,127	
тс		not used	
т7	[K]	1082,75	
T17	[K]	n/a	
WFE	[kg/s]	0,635519	
WFT	[kg/s]	0,635519	
W1A	[kg/s]	31,1442	
W7	[kg/s]	31,4683	
W17		n/a	
W2	[kg/s]	31,1442	
XNH	[RPM]	14283,9	
XNI		n/a	
XNL		n/a	
XNSD		n/a	
ALT	[m]	0	
ERAM1A		not used	

ERAM1A		not used
PAMB	[kPa]	101,325
PLA		90
P1A	[kPa]	100,312
ТАМВ	[K]	298,15
T1A	[K]	298,15
XM		0
SML		n/a
SMI		n/a
SMH		32,8606
		not used
		not used
PWSD		n/a
TIME		0
TRQSD		n/a
ERAM1		0,99
ERAM11		n/a
		not used
DTAMB	[K]	0
DT1A		not used
PC		0
RC		0
WB3	[kg/s]	0,311442
WB3Q		0,01
PWXH	[kW]	0 +

7.3.1 FIXOUT Parameter Definition

The SAE Aerospace Standard AS681G provides a method for the presentation of results from computer programs using FORTRAN 77.

The fixed sequence list of the parameters in the fixed output labeled common (FIXOUT), and the identity of these parameters (with typical nomenclature consistent with ARP755) are as follows:

- 1 CLASS (6) Engine program security classification Dimension 6 (HOLLERITH)
- 2 IDENT (36) Engine program titles Dimension 36 (HOLLERITH)

20

- 3 NSI (10) Numerical Status Indicator Dimension 10 (INTEGER)
- 4 AE8 Primary exhaust nozzle throat effective area
- 5 AE18 Bypass exhaust nozzle throat effective area
- 6 ANGBT Boat-tail angle
- 7 FRAM Ram drag
- 8 FG Gross thrust
- 9 FGI Ideal gross thrust
- 10 FG19 Bypass stream gross thrust
- 11 FGI19 Bypass stream ideal gross thrust
- 12 FHV Fuel lower heating value
- 13 FN Net thrust
- 14 PB3 High pressure compressor discharge bleed flow total pressure
- 15 P7 Primary exhaust flow total pressure
- 16 P17 Bypass exhaust flow total pressure
- 17 SFC Specific fuel consumption
- 18 -- Reserved for historical consistency
- 19 TB3 High pressure compressor discharge bleed flow total temperature
- 20 TC Control temperature (cockpit display)
- 21 T7 Primary exhaust flow total temperature
- 22 T17 Bypass exhaust flow total temperature
- 23 WFE Engine fuel flow rate
- 24 WFT Total fuel flow rate
- 25 W1A Engine inlet flow rate at station 1A
- 26 W7 Primary exhaust flow rate
- 27 W17 Bypass exhaust flow rate
- 28 W2_ High pressure compressor inlet flow rate (The full number representing the relevant station designation, e.g., W21, W215, W2A, will be defined by the program supplier.)
- 29 XNH High pressure rotor rotational speed
- 30 XNI Intermediate pressure rotor rotational speed
- 31 XNL Low pressure rotor rotational speed

22	Turb	ojet Deck	
3	32	XNSD	Delivered shaft rotational speed
3	33	ALT	Geopotential pressure altitude
3	84	ERAM1A	Ram pressure recovery at station 1A
3	85	PAMB	Ambient pressure
3	6	PLA	Power lever angle
3	37	P1A	Engine inlet total pressure at station 1A
3	88	TAMB	Ambient temperature
3	9	T1A	Engine inlet total temperature at station 1A
4	0	XM	Free stream Mach number
4	1	SML	Low Pressure Compressor Surge Margin
4	2	SMI	Intermediate Pressure Compressor Surge Margin
4	3	SMH	High Pressure Compressor Surge Margin
4	4		Reserved for historical consistency
4	5		Reserved for historical consistency
4	6	PWSD	Delivered shaft power
4	7	TIME	Output Time, from start of transient case
4	8	TRQSD	Delivered shaft torque
4	9	ERAM1	Primary stream ram pressure recover
5	50	ERAM11	Secondary stream ram pressure recover
5	51		Reserved for historical consistency
5	52		Reserved for historical consistency
5	53		Reserved for historical consistency
5	54		Reserved for historical consistency
5	55	DTAMB	Ambient temperature minus standard atmosphere temperature
5	6	DT1A	Temperature added to T1A
5	57	PC	Power code
5	58	RC	Rating code
5	59	WB3	High pressure compressor discharge total bleed flow rate (Resultant from combined inputs no 20 and 21 of FIXIN)
6	60	WB3Q	High pressure compressor total bleed flow ratio (discharge over component inlet)

(Resultant from combined inputs no 20 and 21 of FIXIN)

61 PWXH Customer high pressure rotor power extraction

7.4 VAROUT

humid	relative humidity [%]
T2	compressor inlet temperature
ТЗ	compressor exit temperature
T4	burner exit temperature
T41	turbine stator exit temperature
T5	turbine exit temperature
P3	compressor exit) pressure
PS3	compressor exit static pressure
P5	turbine exit pressure
NHDOT	spool speed change, % per second
FAR4	burner fuel-air-ratio
LIMCD	limiter code
BTAC	beta value in the compressor map
RXNH	relative spool speed
BTAT	beta value in the turbine map
DTRC	temperature increase due to recirculating bleed air

8 Program Messages

8.1 Numerical Status Indicator NSI

The following Numerical Status Indicator values are defined:

0	Valid result
600	A component map was extrapolated
1600	Surge margin < 0
9100	Calculation did not converge

9199	Severe computing problem
9201	SIM must be 1 or 2
9202	ZP1A, ZT1A or ZPAMB=0 while SIM=2
9203	SIM=2 can not be combined with SERAM=3
9204	SERAM must be 1, 2 or 3
9210	ZRC not defined
9290	Power Lever Angle PLA definition error
9291	Engine model error: SMode must be equal to 1
9292	STRANS must be 1, 2 or 3 during transient operation
9293	TIME >= ZTIME is not permitted

8.2 Steady State Limiter Codes

During steady state simulations the following limiter codes are used:

-5	cp_val_min3	value of the third cp_val min limiter
-4	cp_val_min2	value of the second cp_val min limiter
-3	cp_val_min1	value of the first cp_val min limiter
-2	WF_min	min fuel flow
-1	NH_min	min gas generator spool speed
0		operation within limits or no limiters activated
1	NL_max	max low-pressure spool speed
2	NLR_max	max corrected low-pressure spool speed
3	NH_max	max high-pressure spool speed
4	NHR_max	max corrected high-pressure spool speed
5	T3_max	max burner inlet temperature
6	P3_max	max burner inlet pressure
7	T41_max	max stator outlet temperature (SOT)
8	T45_max	max low-pressure turbine inlet temperature
9	T5_max	max turbine exit temperature
10	TRQ_max	max torque
11	cp_val_max1	value of the first cp_val max limiter

12	cp_val_max2	value of the second cp_val max limiter
13	cp_val_max3	value of the third cp_val max limiter

8.3 Transient Limiter Codes

During transient simulations the limiter code LIMCD in VAROUT can have the following values:

0		control system switched off
1	Control	operation within limits
2	Ν	max spool speed
3	N,corr	max corrected spool speed
4	ТЗ	max burner inlet temperature
5	P3	max burner inlet pressure
6	T41	max stator outlet temperature (SOT)
7	T5	max turbine exit temperature
8	cp_val_max1	max composed value 1
9	cp_val_max2	max composed value 2
10	cp_val_max3	max composed value 3
11	N_dot_max	max dN/dt (acceleration)
12	far max	max fuel-air-ratio (acceleration)
13	WF/P3 max	max WF/P3 (acceleration)
14	WF max	max fuel flow
15	N_dot_min	min dN/dt (deceleration)
16	far_min	min fuel-air-ratio (deceleration)
17	WF/P3 min	min WF/P3 (deceleration)
18	Nmin	min spool speed
19	WF min	min fuel flow
20	cp_val_min1	min composed value 1
21	cp_val_min2	min composed value 2
22	cp_val_min3	min composed value 3

8.4 About Convergence Problems

Any off-design gas turbine performance simulation program requires iteration. That means that the values of some variables must be estimated at the beginning of the calculation. Corresponding with the number of iteration variables there is an equal number of conditions within the mathematical model of the gas turbine. While the iteration variables do not have their correct value, then some or all of the conditions are not fulfilled. A sophisticated algorithm varies the variables iteratively in such a way that all the conditions are fulfilled when the calculation is finished.

Sometimes the iteration fails to converge which is indicated by NSI=9100. Non-convergence can have many reasons: sometimes one or the other of the normal input properties are unreasonable, sometimes the start values of the iteration variables are far away from those of the solution, sometimes the solution requires one or more components operating far outside of their respective component maps.

In this computer deck the output values of the iteration variables are BTAC, RXNH, BTAT and DTRC in the VAROUT group. While SEST is zero, these values are employed as estimates for the next point to be calculated. If a point has not converged, then most probably the values of BTAC, RXNH, BTAT and DTRC are unreasonable and not suited as estimate for the next case to be calculated. For recovering from this situation, SEST can be set to 1 which makes the iteration begin with the values ZBTAC, ZXNH, ZBTAT, ZDTRC from the VARIN group.

If the iteration fails to converge because the operating conditions between two steady state points are very different - an idle case followed by a max rating case, for example - then the problem can be avoided eventually by introducing a few intermediate rating steps.

Convergence problems that are not understood can be examined with GasTurb 12. In this program there are many more diagnostic options available than in this computer deck.

If non of the advice given above helps then it might be that no solution exists. This can be the case for excessive power or bleed off-take, for example.

If in transient simulations a convergence problem shows up while one of the input properties changes significantly in a very short time, then the time step might be too big. This is similar to the case when the spool speed input (while STRANS=3) implies excessive Ndot (dN/dt) values.

If during a transient simulation the iteration converges after having failed at one or a few prior time steps, then the convergence problem can mostly be ignored.

9 Test Cases

9.1 Cycle Reference Point

During initialization of the DLL the GasTurb cycle reference point is written to the input (i.e. FIXIN and VARIN) and the output (FIXOUT and VAROUT) groups.

9.2 Steady State Off-Design

The performance point to be calculated is defined by the data given in FIXIN and VARIN. For a steady state point ZTIME must be set to zero.

9.3 Transient

A transient simulation is performed if the FIXIN property ZTIME has a positive value greater than the FIXOUT property TIME from the previously calculated point.

Three examples are selectable in the test main program respectively in the Excel sheet:

- a 10% step increase in fuel flow which demonstrates the fuel flow input option (STRANS=2)
- a PLA maneuver with a slam deceleration followed by a slam acceleration
- a spool speed input as a function of time

10 Identification and Revision Procedure

The version of the DLL can be read by calling the function GetDLLVersion.

The responsibility for the data is with the provider of the Engine Model File.

11 References

[1] SAE AEROSPACE STANDARD AS681 Rev. G 1996

[2] J. Kurzke GasTurb 12 User Manual 2012

Index

- C -

Call Parameters 8 Call Sequence 9 Convergence Problems 26 Cycle Reference Point 26

- D -

Data Directory 7 Data Input and Output 16 Delphi 7, 8 Delphi Test Main 11 DLL Directory 7 DLL Initialization 9 DLL Interface 8

- E -

Engine Model File7, 13Excel7, 8Excel Application11

- F -

File Organization 7 FIXIN 8, 16 FIXIN Parameter Definition 17 FIXOUT 8, 19 FIXOUT Parameter Definition 20 Fuel Flow Given 15 Function 8

- G -

GetDLLVersion 8, 27

- | -

Idle15, 16Initialization9InitializeEngine8, 9Intake Map13Interface8Iteration Variable26

- L -

Limiter codes, steady state 24 Limiter codes, transient 25 Limiters 13

- M -

Maximum Power 15, 16 Messages 23

- N -

Nomenclature, Stations 11 NSI 23 Numerical Status Indicator 23

- P -

Path to the DLL 8 PLA 14 PLA Definition 13 Power Code 15 Power Lever Angle 14 Procedure 8

- R -

Rating Code 15, 16 References 27

- S -

SERAM 16 SEST 9, 19, 26 SIM 16 SinglePoint 8, 9 SMode 13 Spool Speed Given 15 Stations 11 Steady State Performance 26 19.26 STRANS Subroutine 8

- T -

Test Main, Delphi11Test Main, Excel11Thrust Given15Transient Simulations27

- V -

VARIN 8, 19 VAROUT 8, 23 VBA 8, 11 Vista 7 Visual Basic for Applications 8